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(Spin) Density Functional Theory: The Canonical approach 
that solves most computational materials/nanoscience

Magnetic moment 
scale (      )

43 atom FePt 
nanopaticle 55 atoms

201 atoms

Energy,                  ,  a unique functional of density 

Paul Kent, ORNL, unpublished

Kohn-Sham equation:

Poisson equation:
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Nearsightedness and the locally self-consistent 
multiple scattering (LSMS) method

•Nearsightedness of electronic 
matter - Prodan & Kohn, 
PNAS 102, 11635 (2005)
- Local electronic properties such 

as density depend on effective 
potential only at nearby points.

• Locally self-consistent multiple 
scattering method - Wang et 
al., PRL 75, 2867 (1995)
- Solve Kohn-Sham equation on a 

cluster of a few atomic shells 
around atom for which density is 
computed

- Solve Poisson equation for 
entire system - long range of 
bare coulomb interaction
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A parallel implementation and scaling of the LSMS method: 
perfectly scalable at high performance
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Just looking at larger systems (weak scaling) is 
not necessarily what is needed
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Θ

Coarse grained model of a nanoparticle

{!m1, !m2, ..., !mN} !M = 1/N
N∑

i=1

!mi

!H
Θ

!M

Θ
!H

!M

Realistic model or LDA/GGA 
based DFT calculation. In 
most cases E(T, !M) ≈ E(T = 0, !M)

With the density of states we would 
know the free energy at all 
temperature

F (T, !M) = E(T, !M) − kBT lnW (E, !M)

Can we compute the density of states?
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Metropolis Method      Wand-Landau Method

Compute partition function and 
other averages with 
configurations that are weighted 
with a Boltzmann factor

Sample configuration where Boltz-
mann factor is large.

If configurations are accepted with 
probability 1/W all energies are visited 
equally (flat histogram)

4. Iterate 2 & 3 until histogram is flat

1. Select configuration

2. Modify configuration (move)

3. Accept move with probability

2. Propose move, accepted with probability

1. Begin with prior estimate, eg

3. If move accepted increase DOS

5. Reduce                              and go back to 1

Metropolis et al, JCP 21, 1087 (1953) Wang and Landau, PRL 86, 2050 (2001)

Z =

∫
e
−E[x]/kBT

dx Z =

∫
W (E)e−E/kBT

dE

W
′(E) = 1

Ei = E[xi]

Ef = E[xf ]

Ai→f = min{1, eβ(Ei−Ef )}

Ai→f = min{1, W ′(Ei)/W ′(Ef )}

W ′(Ef ) → W ′(Ef ) × f f > 1

f → f =

√

f
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Metropolis Method         Wand-Landau Method

Sample configuration space with probability

Samples mainly 
regions around 
energy minima

Samples all 
energies equally - 

Z =

∫
W (E)e−E/kBT

dEZ =

∫
e
−E[x]/kBT

dx

1/W (E[x])e
−E[x]/kBT

Check validity of Wang-Landau method by estimating barrier 
hight from Metropolis MC and fitting to KV sin

2
Θ
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FIG. 2: (color online) BW free energy of a nanoparticle with
R = 5 and 999 Fe spins at 200, 300,...,600K. The barrier is
higher at lower temperatures. Curves in the main plot have
been shifted vertically to reveal and compare the the barrier.
The inset shows the same curves before the vertical shift,
where the barrier is invisible in the original large scale.

the dominant path is the coherent one, then we expect
∆F (T ) ≈ K1(T ), which is actually the case we have seen.

The joint density of states g(E, Mz) has a shape simi-
lar to that of the Heisenberg ferromagnet presented in
Ref. [13]. However, due to the easy-axis anisotropy,
g(E, Mz) of a FePt nanoparticle has a shallow deficiency
(∂2g/∂M2

z > 0) at low energies. This shallow valley in
g(E, Mz) is responsible for the barrier in F (T, Mz). The
free energy of a nanoparticle at different temperatures
is shown in Fig. 2. F (T, Mz) varies from −1 × 106K to
−2 × 106 K in a temperature range from 200K to 600K,
but the barrier separating the double valleys is of order
104 K. To reveal and compare the barrier at different
temperatures, we have to shift the curves vertically in
Fig. 2. The barrier and the spontaneous magnetization
both vanish at about 600K, which is consistent with the
magnetization curve in Fig 1.

The free energy barrier for a bulk system of size L = 8
and 512 Fe spins are shown in Fig. 3, where we also com-
pare the results of the extended WL algorithm to the
results estimated from the histograms of MC simulations
at different temperatures. Both methods show a slight
curvature in the temperature dependence and the low-
temperature data obviously extrapolates to the T = 0
energy barrier, calculated by setting the system to ferro-
magnetic configurations with different orientations. The
agreement at low temperatures is due to the fact that
the switching process is dominated by coherent rotation
of spins there. At middle temperatures, the barriers from
the extended WL algorithm are slightly lower than those
from the histogram method, because the former sam-
ples the incoherent intermediate states. The free energy
barrier of the extended WL algorithm vanishes at about
650K, which is very close to the bulk Tc = 642.5K, which
was previously obtained with finite size scaling[16]. We
claim that the extended WL algorithm is a quantitatively
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FIG. 3: Free energy barrier of a bulk system with peri-
odic boundary conditions calculated by two different meth-
ods. The data point at T = 0 is the energy barrier. Both
data sets approach the T = 0 energy barrier at low temper-
atures, but at intermediate temperatures, the extended WL
algorithm gives a slightly lower free energy barrier.

correct method to calculate energy barriers.

To study the size and temperature dependence of the
free energy barrier of nanoparticles. We plot ∆F (T )/N
for several nanoparticles as a function of temperature in
Fig. 4. Free energy barriers estimated from equilibrium
Monte Carlo simulation are also plotted to compare with
results from the joint density of states. In both set of
data, the barrier linearly depends on temperature below
the transition temperature, while the solid symbols are
slightly below the corresponding hollow symbols every-
where. This small difference is an evidence that the mag-
nitude of the vector magnetization only changes slightly
during the switching process. Therefore, the switching
process can be viewed as a coherent rotation. Neverthe-
less, longitudinal fluctuation of the magnetization dur-
ing the switching process lowers the free energy barrier,
which is captured by the density of states calculations.
We can fit these curves with ∆F (T ) = ∆E(1−T/Tc(R)),
where Tc(R) is understood as the size-dependent transi-
tion temperature of the nanoparticles, and ∆E is the
energy difference (free energy difference) at T = 0. ∆E
is simply given by the energy difference between a fer-
romagnetic configuration lying in the x-y plane and the
ground state ferromagnetic configuration parallel to the
z axis, because the former is the ground state if the con-
straint Mz = 0 is imposed. Obviously, ∆F (T )/N for
relatively large nanoparticles quickly converges to the
bulk value. For smaller nanoparticles, the reduction in
∆F (T )/N seems to weakly depend on the temperature.
The observation of the coherent rotation of magnetiza-
tion and the spatial dependence of magnetization shown
in Fig. 1(b) both suggest that the highly ordered core
of the nanoparticle is responsible for the large free en-
ergy barrier that have been observed in experiments.[5]
Comparing the results on nanoparticles to those of bulk
systems in Fig. 3, we notice that the extra surface effect

Metropolis Monte Carlo

Quantitative test for bulk model of FePt

Exact value at T=0 (determined analytically)
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global update of joint DOS at every MC step...

Wang-Landau acceptance:

Ai→f = min{1, eα(wα(xf )−wα(xi)}

Not quite embarrassingly parallel

Metropolis MC acceptance:

random walker 1

random walker 2

Ai→f = min{1, eβ(Ei−Ef )}

local calculation of energy and observable ~ millisecond to minutes

limited by latency ~ microseconds
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Test problem: ab initio simulation of magnetism in Fe

• Robust local magnetic moment

- Well reproduced by LDA calculation

• Ferromagnetic transition temperature Tc=1050K

- LDA + mean field on magnetic fluctuations overestimates Tc

- Adding Onsager cavity field corrections improves results

- What would a full ab initio Monte Carlo simulation give for Tc?

• Bulk Fe with N atoms (hundreds) in unit 
cell

• Sample non-collinear magnetic moment 
configurations

• Compute energy with LSMS method using 
(LSDA) and frozen potential approx.

• Accumulate density of states with 
extended Wang Landau algorithm

{!m1, !m2, ..., !mN}

Excellent test for WL-LSMS method:
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Organization of the WL-LSMS code using a 
master-slave approach

Master/driver node controlling WL 
acceptance, DOS, and histogramCommunicate moment 

directions and energy
LSMS running 
on N 
processors to 
compute 
energy of 
particular 
spin-
configurations
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Scaling test with WL-LSMS code

N = 128 Fe atoms and 800 
Monte Carlo samples running 
on Cray XT4 (Jaguar)

Tuesday, 8 December 2009



What it takes to compute a converged DOS on a 
Cray XT5
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16 atoms 250 atoms

WL walkers 200 400

total cores 3,208 100,008

WL samples 23,200 590,000

CPU-core hours 12,300 4,885,720 Just 2 days!!!

16 atoms
(2x2x2 unit cells)

250 atoms
(5x5x5 unit cells)
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With the DOS we have the partition function and 
everything else!
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Specific heat

16 atoms
(2x2x2 cell)
Tc=670K

250 atoms
(5x5x5 cell)
Tc=980K

Experiment: Tc = 1050K

L Tc (J)
2 1.105
3 1.340
4 1.370
5 1.420
6 1.465
7 1.460
8 1.490

1.44

WL simulations for cubic
Heisenberg model
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Upgraded Cray XT5 portion of Jaguar @ NCCS

Peak: 2.331 PF/s
Hex-Core AMD 
Freq.: 2.6 GHz
224,162 cores
Memory: 300 TB
For more details, go to 
www.nccs.gov
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Weak scaling on Cray XT5 (Jaguar)
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Sustained performance of WL-LSMS 
on Cray XT5

1.836 Petaflop/s
on 223,232 cores

1.755 Petaflop/s
on 223,752 cores

829 Teraflop/s
on 100,008 cores
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Conclusions

• It is now possible to compute free energies in nanoscale 
systems

- using ab initio methods based on Density Functional Theory

- fully taking into account entropy

• First ab initio calculation of ferromagnetic transition 
temperature in Fe that does not rely on mean-field 
approximation

- LDA answer based on WL-LSMS underestimate Tc by (only) 7%

• WL-LSMS code sustained 1.836 Petaflop/s (double 
precision) on 223,232 cores of the Cray XT5 system Jaguar
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